
Implementation of Query Result Caching Using
Dynamic Data Cache

M. A. Ramteke1, Prof. S. S. Dhande2, Prof. H. R. Vyawahare3

Sipna College of Engineering and Technology, Amravati,
Maharashtra, India

Abstract- Due to query result caching multiple read operations
for the same result is avoided. It allows reuse of answers of
previous queries, so reducing the delivery time of answers. In
this paper we propose a cache management scheme. We
present a method for reuse of query results for the future
queries using dynamic data cache. Caching is the most
important performance optimization technique. A dynamic
data cache caches query results. Experimental evaluation
shows that our caching scheme using dynamic data cache can
reduce the cost of processing query workloads effectively. The
performance of the proposed architecture is evaluated using
hit rate and response time of query requests. The results
obtained show that the proposed scheme is effective.

Keywords— dynamic data cache, caching, query result
caching, cache replacement, hit rate.

I. INTRODUCTION

 If you have queries that run over and over query result
caching provides performance gains. Query result caching
is a popular technique for reducing both server load and
user response time. Due to query result caching multiple
read operations for the same result is avoided.

 The cache as a component improves performance by
storing data such that future requests for that data can be
served faster. The data that is stored within a cache might
be query results that have been computed earlier. If
requested data is contained in the cache it means if it is
cache hit, that request can be served by simply reading the
cache, which is comparably faster. Caching query results is
one of the most crucial mechanisms to cope with a
demanding load.

 A large number of users submit queries to search
engines on a regular basis in search of content. As the
number of users is large and the volume of data involved in
processing a user query is high, it is necessary to design
efficient mechanisms that enable engines to respond fast to
as many queries as possible. An important mechanism of
this kind is caching. Also query result caching is an
important technique employed in many information
retrieval systems. A cache of query results that is dynamic
data cache can serve the previously computed results of
queries for a large number of queries. Hence, this technique
helps a retrieval system to satisfy the low response time and
high query processing throughput requirements, especially
under high user query traffic volumes.

 It is obvious that the cached query results will provide
very high performance benefit over results that are not
cached. A key to achieving high performance and
scalability in client-server database systems is to effectively

carry out query result caching. When there is a high
probability of queries being repetitive in use, query result
caching will provide better performance. Instead of wasting
time in re-evaluating the query, the database can directly
fetch the results from already stored cache. The most
obvious benefit of query result caching can be seen in
systems where data retrieval rate is very high when
compared to data manipulation. Hence database gets
modified after the long periodic intervals. During these
intervals if a particular query is fired 100 times then the
result of the query is calculated only once that is for the first
time and 99 times the stored result is reused. Data
Manipulation can invalidate the cache results because the
inserted or modified or deleted data can bring the difference
between the cached results and the actual results. Hence
regeneration of the cached results will be required to restore
the results back again to the useful state. If data
manipulation rate is not low, database system will have to
spend a considerable amount of time in bringing the
invalidated results once again into a valid state, thus
forfeiting the advantage of using this technique.

 Dynamic caching of query results is more complex than
caching static results, because the cached query entries may
become invalid as a result of database writes. Dynamic
data cache maintains previous query results. When a result
is requested from an application, first is searched inside the
cache and if found is automatically returned to the client,
otherwise is loaded form database, cached and returned to
the client. When an update, delete or insert query is
received the cache will remove all cached query entries
dependent on the affected tables. So that if next time query
is fired related to that tables user will get right results.

 Caching queries and reusing results of previously
computed queries is one important query optimization
technique. Search engines receive wide number of queries
per day, and for each query, return a result page to the user
who submitted the query. The user may request additional
result pages for the same query, submit a new query, or quit
searching altogether. Thus an efficient mechanism for
caching query may enable search engines to lower their
response time in obtaining the result pages. Also in web
services communities systems that access distributed web
services providers, an efficient query processing requires an
advanced caching mechanism to reduce the query response
time. A query result caching mechanism allows us to
effectively use results of prior queries when the source is
not readily available.

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3653-3656

www.ijcsit.com 3653

II. IMPLEMENTATION METHODOLOGY

 A cache is an area of local memory that holds a replica
that is copy of frequently accessed data that is otherwise
expensive to get or compute. Example of such data includes
a result of a query to a database. A cache works as the
following: A user requests data from cache using query as a
key. If the key is not found, the application retrieves the
data from a backend database system and puts it into the
cache. The next request for a key is serviced from the cache.

The implemented work is divided into three steps as,
1. Query result returned by cache
2. Query result returned by database and result stored in

cache.
3. Eviction of query result from cache; update, delete,

insert to database.
 The approach is to cache the queries, if same query is

requested in future its result can be reused and will improve
the performance of application. It consists of techniques for
query matching, consistency maintenance, and cache
replacement to achieve the desired efficiency. To increase
the speed in delivering dynamic web pages, database query
result caching is useful. The proposed work is implemented
in such a way that it receives SQL queries and will
determine if they can be satisfied from dynamic data cache.
Dynamic data cache maintains previous query results. The
main issue is in retaining data consistency. The cache
replacement component of dynamic data cache will consist
of a replacement policy, which determines which cached
query to replace, and a replacement mechanism, that
determines how to replace cached query so that when cache
becomes full new incoming query to be stored.

 Dynamic caching of query results is more complex than
caching static results, because the cached query entries may
become invalid as a result of database writes. Dynamic
data cache maintains previous query results. When a query
result is requested from an application, first it is searched
inside the cache and if found result is returned to the client,
otherwise is loaded from database, cached and returned to
the client. When an update, delete or insert query is
received the cache will remove all cached query entries
dependent on the affected tables. So that if next time query
is fired related to that tables user will get right results.
Objective of implemented work is to reduce query
processing load, to result in users receiving query result
faster using caching and to reduce load on backend database
management system.

III. COMPONENTS OF DYNAMIC DATA CACHE

Following are the components of dynamic data cache.
Cache manager-
 Cache manager maintains query results with query as a
key. Cache is implemented using hash table.
Cache replacement algorithms-

The following cache replacement algorithm is used to
replace the cached query results when cache becomes full.
The goal of any cache is to maximize the hit ratio. The
main difference in strategies is in how cached elements are
selected for elimination when the cache becomes full.

a. First In First Out (FIFO):
Result sets are added to the cache as they are generated,

when the cache is full, items are ejected in the order they
were added.

b. Least Frequently Used (LFU):
 The cached query result with least number of hits, the

Least Frequently Used cached query result, is evicted.
Result sets are added to the cache as they are generated;
when the cache is full, the least recently used item is ejected.
There is a need to have a replacement algorithm to purge
entries from a cache when the boundary conditions are
reached. For example, reaching the maximum number of
entries allowed. One such algorithm is LFU (Least
Frequently Used). The cached query results which were
referenced in the frequent past, are not expected to be
referenced again in the near future is ejected. LFU is widely
used in database and web-based applications. In this
algorithm cache entry which has been accessed frequently
in past and whose access count is less will be replaced. If
we are writing your own cache, one approach is to maintain
a timestamp at which the entry was inserted and select the
entry with the oldest timestamp also whose access count is
less to be removed. This policy replaces the intermediate
result that has been requested least frequently. The policy is
based on the same principle as page replacement policies in
operating systems. Every cached item is associated with a
time stamp which is the last time of the item was accessed
by a user, since the data server started execution. The item
with the minimum time stamp is replaced when a new item
must be stored in a cache when cache becomes full.

c. Most Recently Used (MRU):
 This cache algorithm removes the most recently used

items first. MRU algorithm is most useful in situations
where the older an item is the more likely it is to be
accessed.

Query matching

 Exact Match Queries
Incoming query is matched with the query within
the cache manager containing query results with
query as a key.

 Semantically same written Match Queries
When no exact match is found then it is checked

whether it is semantically equivalent query (written in
different way) submitted by the user, it is matched with
each query which is stored in cache if match is found then
its result is fetched from cache. Otherwise query is sent to
backend database system.
Consider the following query select firstname, lastname
from persons query is semantically equivalent to select
lastname, firstname, from persons. If user fires first query
its result will be returned to the user and query will be store
in the cache to serve the same future request. Now if user
fires second query same steps will be performed. Both the
query has same result. Cache management scheme will
cache both the queries and unnecessarily cache will get
overload. So to avoid the case that even though result of
both the queries are same both the queries will be stored in

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3653-3656

www.ijcsit.com 3654

cache; due to semantic match it will fetch the result of first
query and second query is not cached since both the queries
are semantically same and hence have same result and thus
unnecessarily overloading of cache is avoided. Consider
another query select * from employees where
first_name='Steven' query which is semantically equal
(written differently) to the following query as select * from
employees where 'Steven'= first_name. Similarly if user
fires first query its result will be returned to the user and
query will be store in the cache to serve the same future
request. Now if user fires second query same steps will be
performed. Both the query has same result. Cache
management scheme will cache both the queries and
unnecessarily cache will get overload. So to avoid the case
that even though result of both the queries are same both
the queries will be stored in cache; due to semantic match it
will fetch the result of first query and second query is not
cached since both the queries are semantically same and
hence have same result and thus unnecessarily overloading
of cache is avoided.
Consistency manager-
 When an update, delete or insert query is fired the
cache will remove all cached query entries dependent on the
affected tables. So that if next time query is fired related to
that tables user will get right results. Read-only queries
issued by client are satisfied from the cache whenever
possible. Update transactions are always forwarded to the
back-end database for execution, without first applying
them to the cache.
Query parser-
 When no exact match is found query parser
performs semantic match with each query in cache. Also
when update, delete and insert query is fired then on which
tables all these operations is performed is determined by
parser so if there is any cached query related to that tables it
is removed from cache in order to get proper result when
next time query is fired related to that tables.
Resource manager-
 Here resource manager maintains statistics that is
access count of query, last access time of query and store
time of query. All these information is used by cache
replacement algorithms in order to evict the cached query
result when cache becomes full.

IV. GENERALIZED ALGORITHM

Following steps are performed for caching.
Input -user incoming query.
Output -result.
 For each query perform the following steps
Step 1: Read query exists in cache, retrieve result from
cache.
Step 2: Read query not available in cache (ie if no exact
match found) then perform semantic match. If semantic
match is found then return the result from cache.
Step 3: Read query not available in cache then
Invoke database server table; Query the corresponding
database; Return the result; Store result in cache.
Step 4: If query is update, delete or insert then remove
cached query result from cache.

V. RESULT ANALYSIS

The goal of any cache is to maximize the hit ratio. The
performance of application demo that is simulator
performance with caching was evaluated. The performance
metrics used in the presented approach focus on the cache
hit rate and response time. To evaluate the efficiency of
policies, we use the hit rate of the cache and response time.
In this experiment the performance of caching query results
is evaluated, by comparing the effectiveness of several
cache replacement algorithms: FIFO, MRU and LFU.
Furthermore, the performance of the cache replacement
algorithms is studied by estimating the strength of the cache
content. This strength is evaluated by the consideration of
the cached result retrieval rates as well as their frequency of
access.

The database query result sets can be further categorized
into two groups by their access and invalidation patterns: (1)
high request rate and no invalidation; (2) high request rate
and low invalidation rate.

Caching query results provide more gains in terms of
efficiency, especially when the network communication
dominates the query processing costs.

(1) High request rate and no invalidation
 A set of queries was fired to test the performance

gained due to caching under different cache replacement
policies in which maximum number of queries was repeated
and there was no updation, insertion and deletion.
 Below figure shows performance gain in terms of
average response time under different cache replacement
algorithms, high request rate and no invalidation.

Figure1: Performance gain in terms of average response
time under different cache replacement algorithms, high

request rate and no invalidation.

 Figure 2 shows hit rate of cache in form of percentage
under different cache replacement policies in which
maximum number of queries was repeated and there was no
updation, insertion and deletion.
 Cache hit rate represents the percentage of all requests
being serviced by a cache copy of the requested result,
instead of contacting the original database server. The
higher the hit ratio, the better the response time in general.

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3653-3656

www.ijcsit.com 3655

Figure 2: Hit rate in form of percentage under different cache
replacement algorithms, high request rate and no invalidation.

(2) High request rate and low invalidation rate.
A set of queries was fired to test the performance gained

due to caching under different cache replacement policies in
which maximum number of queries was repeated and there
was less updation.
 It is obvious that benefit of query result caching can
be seen when data retrieval rate is very high when
compared to data manipulation.

Figure 3: Performance gain in terms of average response time

under different cache replacement algorithms, high request rate
and low invalidation rate.

Figure 4 shows hit rate of cache in form of percentage

under different cache replacement policies in which
maximum number of queries was repeated and there was
less updation.
 Cache hit rate represents the percentage of all
requests being serviced by a cache copy of the requested
result, instead of contacting the original database server.

Figure 4: Hit rate in form of percentage under different cache

replacement algorithms, high request rate and low invalidation rate.

VI. CONCLUSION

Our demo application shows effective use of query result
caching. With increasing complexity of the query the
benefits of caching keeps increasing. This is because
complexity has a role to play when the result of the query is
calculated and not when the calculated result of the query
previously saved is brought from the cache. Time required
to calculate the result of the query keeps increasing with the
increasing complexity of the query while time taken to
make reuse of previously calculated result remains almost
constant. Thus caching query results increases the
scalability of the backend database by serving number of
queries at the dynamic data cache. This reduces average
response time when the backend server is experiencing high
load. It offloads origin backend system and provides better
client response time.

REFERENCES

[1] Qiong Luo, Jeffrey F. Naughton, Rajasekar Krishnamurthy, Pei Cao
and Yunrui Li. “Active Query Caching for Database Web Servers”,
D. Suciu and G. Vossen (Eds.): WebDB 2000, LNCS 1997, pp.
92-104, 2001. Springer - Verlag Berlin Heidelberg 2001.

[2] M. Altinet, Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, B. G.
Lindsay, H. Woo, L. Brown, “DBCache: Database Caching for Web
Application Servers”, 612, SIGMOD 2002.

[3] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “DBProxy: A
self managing edge-of-network data cache”. Technical Report
RC22419, IBM Research, 2002.

[4] C. Bornhovd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald,
“Adaptive Database Caching with DBCache”, Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, 2004.

[5] Per-Ake Larson, Jonathan Goldstein, Jingren Zhou, “Transparent
Mid-Tier Database Caching in SQL Server”, June 9-12, 2003, San
Diego, CA. 2003 ACM 1-58113-634-X/03/06 SIGMOD 2003.

[6] K. Amiri, R. Tewari, S. Park, and S. Padmanabhan, “On space
management in a dynamic edge data cache”. In WebDB Conference
(Informal Proceedings), 2002.

[7] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan, “DBProxy: A
dynamic data cache for Web applications”, In Proc. International
Conference on Data Engineering, IEEE Computer Society 2003.

[8] C. Mohan, “Caching Technologies for Web Applications” Available
at almanden.ibm.com/u/mohan/Caching_VLDB2001.pdf , Rome
,VLDB 2001.

[9] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs,
Todd Mowry, Christopher Olston, Anthony Tomasic, “Scalable
Query Result Caching for Web Applications", VLDB Endowment,
ACM. VLDB `08, August 2430, 2008.

[10] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G.
Lindsay, J. F. Naughton, “Middle- Tier Database Caching for e-
Business”, 600- 611,SIGMOD 2002.

 [11] Per-Ake Larson, Jonathan Goldstein, Hongfei Guo, Jingren Zhou,
“MTCache: Mid-Tier Database Caching for SQL Server”, Bulletin of
the IEEE Computer Society Technical Committee on Data
Engineering.

[12] Laurentiu CIOVICĂ ,“Open Source Caching Solutions”, Open
Source Science Journal Vol. 2, No. 3, 2010.

M. A. Ramteke et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3653-3656

www.ijcsit.com 3656

